数学简便计算,有哪几种方法?
的有关信息介绍如下:主要有六大方法:
“凑整巧算”——运用加法的交换律、结合律进行计算。
运用乘法的交换律、结合律进行简算。
运用减法的性质进行简算,同时注意逆进行。
运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。
运用乘法分配律进行简算。
混合运算(根据混合运算的法则)。
具体解释:
一、“凑整巧算”——运用加法的交换律、结合律进行计算。
凑整,特别是“凑十”、“凑百”、“凑千”等,是加减法速算的重要方法。
加法交换律
定义:两个数交换位置和不变,
公式:A+B =B+A,
例如:6+18+4=6+4+18
加法结合律
定义:先把前两个数相加,或者先把后两个数相加,和不变。
公式:(A+B)+C=A+(B+C),
例如:(6+18)+2=6+(18+2)
引申——凑整
例如:1.999+19.99+199.9+1999
=2+20+200+2000-0.001-0.01-0.1-1
=2222-1.111
=2220.889
二、运用乘法的交换律、结合律进行简算。
乘法交换律
定义:两个因数交换位置,积不变.
公式:A×B=B×A
例如:125×12×8=125×8×12
乘法结合律
定义:先乘前两个因数,或者先乘后两个因数,积不变。
公式:A×B×C=A×(B×C),
例如:30×25×4=30×(25×4)
三、运用减法的性质进行简算,同时注意逆进行。
减法
定义:一个数连续减去两个数,可以先把后两个数相加,再相减。
公式:A-B-C=A-(B+C),【注意:A-(B+C)= A-B-C的运用】
例如:20-8-2=20-(8+2)
四、运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。
除法
定义:一个数连续除去两个数 ,可以先把后两个数相乘,再相除。
公式:A÷B÷C=A÷(B×C),
例如:20÷8÷1.25=20÷(8×1.25)
定义:除数除以被除数,把被除数拆为两个数字连除(这两个数的积一定是这个被除数)
例如:64 ÷16=64÷8÷2=8÷2=4
五、运用乘法分配律进行简算。
乘法分配律
定义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
公式:(A+B)×C=A×C+B×C
例如;2.5×(100+0.4)= 2.5×100+2.5×0.4= 250+1= 251
六、混合运算(根据混合运算的法则)。
学会数字搭配( 0.5和2、0.25和4、0.125和8)。