已知关于x的一元二次方程x2+2(m+1)x+m2-1=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两
的有关信息介绍如下:(1)由题意有△=[2(m+1)]2-4(m2-1)≥0,
整理得8m+8≥0,
解得m≥-1,
∴实数m的取值范围是m≥-1;
(2)由两根关系,得x1+x2=-(2m+1),x1?x2=m2-1,
(x1-x2)2=16-x1x2
(x1+x2)2-3x1x2-16=0,
∴[-2(m+1)]2-3(m2-1)-16=0,
∴m2+8m-9=0,
解得m=-9或m=1
∵m≥-1
∴m=1.
扩展资料:
一元二次方程的解法:
1、直接开方法
直接开方法,也就是类似于ax²=n这种形式,可以转换为x²=···的形式,然后进行开平方得到x的值,当然,前提是等号右边为非负数;
2、配方法
所谓配方法,就是配成完全平方的形式。
只要将方程配成(x+m)²=n这种形式,且n为非负数,就可以直接开平方得到x+m的值,从而再求出x的值;
3、公式法
在公式法中,首先要将方程转换一般形式,ax²+bx+c=0的形式,然后根据判别式△是否小于0确定方程是否有解。
版权声明:文章由 问百问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.wenbwen.com/life/105173.html