似然函数的计算实例
的有关信息介绍如下:考虑投掷一枚硬币的实验。假如已知投出的硬币正面朝上的概率是 ,便可以知道投掷若干次后出现各种结果的可能性。比如说,投两次都是正面朝上的概率是0.25:
从另一个角度上说,给定“投两次都是正面朝上”的观测,则硬币正面朝上的概率为的似然是
尽管这并不表示当观测到两次正面朝上时 的“概率”是0.25。如果考虑 ,那么似然函数的值会变大
这说明,如果参数的取值变成0.6的话,结果观测到连续两次正面朝上的概率要比假设0.5 时更大。也就是说,参数取成0.6 要比取成0.5 更有说服力,更为“合理”。总之,似然函数的重要性不是它的具体取值,而是当参数变化时函数到底变小还是变大。对同一个似然函数,如果存在一个参数值,使得它的函数值达到最大的话,那么这个值就是最为“合理”的参数值。
版权声明:文章由 问百问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.wenbwen.com/article/255951.html