实对称矩阵是什么样子?
的有关信息介绍如下:实对称矩阵:
主要性质:
1、实对称矩阵A的不同特征值对应的特征向量是正交的。
2、实对称矩阵A的特征值都是实数,特征向量都是实向量。
3、n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。
4、若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。
实对称矩阵的特征值都是实数,而其特征向量都是实向量。
但是反过来不能因为特征值都是实数,就断定矩阵是实对称矩阵,非实对称矩阵的特征值也有可能都是实数。
版权声明:文章由 问百问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.wenbwen.com/answer/147283.html