当前位置:问百问>百科词条>单纯形法计算线性规划的步骤

单纯形法计算线性规划的步骤

2024-08-28 06:50:34 编辑:zane 浏览量:538

单纯形法计算线性规划的步骤

的有关信息介绍如下:

单纯形法计算线性规划的步骤

如果依靠软件,比如MATLAB,MATHEMATICA什么的(甚至EXCEL),都有现成的线性规划的解决方案,照你图里面的条件输入就可以了(不知道具体的软件无法回答)。以下说明不用软件的手动计算单纯形法的标准方法。首先添加松弛变量,因为有3个方程,故添加3个松弛变量S1,S2,S3。约束方程组变为:2X1+X2+X3+S1=2(注意小于等于号变成了等于号,这就是添加松弛变量的作用)。X1+2X2+3X3+S2=52X1+2X2+X3+S3=6X1,X2,X3,S1,S2,S3>=0这是一个6个未知数(n),3个方程的方程组(m)。则选择n-m=3个变量作为“基变量”,让其余变量为0(非基变量)。使得方程组退化为:3个未知数,3个方程的方程组。然后根据对目标函数的影响迭代求解。注意:单纯形法是一个迭代(或者说尝试的过程)。先列出单纯形表(一个矩阵,里面的数据是目标函数和方程组的系数)。当我们选择从原点开始(令X1,X2,X3为0,则得到一个基本解:S1=2,S2=3,S3=6 , 目标函数X0=0;),则单纯形矩阵如下:( {{1, -3, -1, -3, 0, 0, 0, 0},{0, 2, 1, 1, 1, 0, 0, 2},{0, 1, 2, 3, 0, 1, 0, 5},{0, 2, 2, 1, 0, 0, 1, 6}} )呃,不知道怎么在百度里面输入矩阵这种东西。。。反正第一行就是目标函数的方程的系数:X0-3X1-X2-X3+S1+S2+S3=0其他行就是下面的方程组。矩阵的最右边一列是方程的右边项。此时的矩阵是令X1,X2,X3为非基,S1,S2,S3为基的,代表“原点”(起始点)的矩阵,此时的目标:X0=0然后选择目标函数中系数最大的变量为“进基”(就是选他进入基变量组,设为0),选择解和“进基”变量之比为最小非负数的变量为“离基”(就是让他离开基变量组,不设为0)。在这里,选择X1作为进基(因为其在目标方程中的系数最小(负得最多,此题选X3也可),S1为离基(因S1行的解与X1系数之比为1,为最小非负数),然后进行矩阵运算(线性代数里面学的那些东西),使得矩阵的第一行中,代表X1,S2,S3的系数为0,S1不为0。继续矩阵变换,选择进基和离基,直到目标函数的所有系数非负(停止条件),如果是最小化问题则是非正。懒得算了,告诉你个结果吧。x0=27/5x1=1/5x2=0x3=8/5

版权声明:文章由 问百问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.wenbwen.com/tips/145718.html
热门文章