Python中Numpy库中的np.sum怎么理解
的有关信息介绍如下:c = np.array([[[0, 1, 2,3],[4, 5, 6,7]],[[1, 2, 3,4],[5,6,7,8]]]print( c.sum(axis=0))print( c.sum(axis=1))print( c.sum(axis=2)) 一个不是很简单,但是很好理解的方法是:你的输入矩阵的shape是(2,2,4),那么当axis=0时,就是在第一个dimension上进行求和,最后得到的结果的shape就是去掉第一个dimension后的shape,也就是(2,4)。具体的计算方法则是,对于c[i,j,k],假设输出矩阵为s[j,k],第一个dimension求和那么就是s[j,k]=∑i(c[i,j,k])如果axis=1,那么输出shape就是去掉第二个dim,也就是(2,4),计算是 s[i,k]=sumj(c[i,j,k])如果axis=2,那么输出shape就是去掉第三个dim,也就是(2,2),计算是 s[i,j]=sumk(c[i,j,k])在数据处理里面经常会碰到高维数据,通过二维矩阵去想它的计算方法就很难了,这个时候只要按axis对应的维度求和,其他维度的位置和形状不变,最后把shape去掉对应维度就能理解了