当前位置:问百问>百科知识>欧拉函数是什么

欧拉函数是什么

2024-07-11 02:56:44 编辑:zane 浏览量:548

欧拉函数是什么

的有关信息介绍如下:

欧拉函数是什么

在数论,对正整数n,欧拉函数\varphi(n)是少于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler's totient function、φ函数、欧拉商数等。 例如\varphi(8)=4,因为1,3,5,7均和8互质。 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明。 [编辑]φ函数的值 \varphi(1)=1(唯一和1互质的数就是1本身)。 若n是质数p的k次幂,\varphi(n)=p^a-p^=(p-1)p^,因为除了p的倍数外,其他数都跟n互质。 欧拉函数是积性函数——若m,n互质,\varphi(mn)=\varphi(m)\varphi(n)。证明:设A, B, C是跟m, n, mn互质的数的集,据中国剩余定理,A \times B和C可建立一一对应的关系。因此\varphi(n)的值使用算术基本定理便知, 若n = \prod_{p\mid n} p^{\alpha_p}, 则\varphi(n) = \prod_{p\mid n} p^{\alpha_p-1}(p-1) = n\prod_{p|n}\left(1-\frac\right)。 例如\varphi(72)=\varphi(2^3\times3^2)=2^(2-1)\times3^(3-1)=2^2\times1\times3\times2=24 [编辑]与欧拉定理、费马小定理的关系 对任何两个互质的正整数a, m,m\ge2,有 a^{\varphi(m)} \equiv 1 \pmod m 即欧拉定理 当m是质数p时,此式则为: a^ \equiv 1 \pmod p 即费马小定理。

版权声明:文章由 问百问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.wenbwen.com/article/112141.html
热门文章